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Highlights  Abstract  
▪ Accurate prediction vehicle transmission system 

health degree, 

▪ Mechanical module has the greatest impact on 

the system health, 

▪ Use PSO-BP neural network integrates 20 types 

characteristic indicators, 

▪ Considered three modules influence on system 

health. 

 

 In order to realize the evaluation of the vehicle transmission system 

health degree, a prediction model by multi-level data fusion method is 

established in this paper. The prediction model applies PSO(Particle 

Swarm Optimization)-BP(Back Propagation) neural network algorithm, 

calculates the whole machine health degree and each module respective 

weights from the test data. On this basis, it analyzes the error between 

the model calculated health degree and theoretical health degree. Then 

the research verifies the validity and prediction model accuracy. The 

health degree which is obtained by the single module feature parameters 

fusion, and the vehicle transmission system health degree is investigated, 

which is less effective compared to the three-level fusions. After that, by 

analyzing the vehicle transmission system multi-parameter feature 

weights, it is found that the mechanical module accounted for the largest 

damage rate, and the three modules influenced the vehicle transmission 

system health degree in the order of mechanical module, hydraulic 

module, and electric control module. The study has played a guiding role 

in the health management of complex equipment. 

  Keywords 
This is an open access article under the CC BY license 

(https://creativecommons.org/licenses/by/4.0/). 
 Vehicle transmission system, Data fusion, PSO-BP algorithm, Health 

degree  

1. Introduction 

Vehicle transmission system is a complex system, integrating 

machine, electricity and hydraulic module. Its service 

performance degradation is a complicated gradual process of 

multi-physical field, multi-module variables and multi-level 

performance parameters. It is difficult to achieve accurate 

assessment and comprehensive characterization by a single 

vibration signal or physical parameter. The load conditions in the 

transmission system components are complex. The load domain 

is wide, the transient shock load is large, the load changes 

frequently. Moreover the dynamic load presents stronger 

random asymmetric alternating characteristics, which is more 

likely to induce accidents such as broken shafts, teeth of gears, 

shafts and bearings. Therefore, it is difficult to conduct online 

real-time evaluation of performance degradation based on 

limited on-board signals. The research on the vehicle 

transmission system health degree is a current hot topic, and 

scholars have done a lot of works. Chen [2] describes the 

nonlinear dynamics caused by vibration and impact in order to 

achieve structural health monitoring and damage detection. Suh 

[23] proposed a data-driven health segmentation method based 

on convolutional neural network, which can monitor the wear 

condition of bearings earlier and more effectively. For the 

mechanical systems health prediction and management, Huh [5] 

proposed a data-driven fault diagnosis method which applies 

critical information map identifying the difference between the 

signal spectrograms of normal and abnormal status. Morais [16] 

monitors the the force in the mechanical system, which is more 

likely to be realized in the monitoring of rotating parts. Bachar 

[1] summarized the application of optic Fiber Bragg Grating 

(FBG) strain sensors for gear diagnostics, developed a new 

diagnosis method based on FBG strain sensor.  

Lei [13] uses deep learning to train deep neural networks, using 

mechanical frequency domain signals to achieve adaptive 

extraction of fault features, and accurately identifies health 

conditions for different fault types at different multi-stage gear 

transmission systems fault locations under multiple operating 

conditions and a large sample number. It is also a good method 

to use autoencoder to automatically learn features and complete 
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health prediction by deep neural network [7, 24]. Pang [18] 

proposes a data-driven neural network, using Neuber criterion 

and Manson coffin equation to estimate the fatigue life of rotors, 

which provide a feasible online health monitoring method for 

steam turbine rotors. Seventekidis [22] studies structural health 

detection by combining finite element simulation and deep 

learning methods Jiang [8]proposes a novel framework to fulfill 

the task of prognostics and health management with a smart 

sensors, consisting of embedded sensing elements, wireless 

communication modules and micro-controllers. Kumar [12] 

proposed a classification model for bearing degradation 

evaluation based on machine learning classification matrix, 

which improved the accuracy of the classification model. Yan 

[25] proposed a health index extraction method, which is better 

characterize the degree of degradation compared to relying 

solely on spectral oil data.  

In the study of hydraulic system, Kim [10] proposes  

a method for fault diagnosis of gear box based on embedded 

convolutional neural network in the hydraulic module health 

degree evaluation. Prakash [19] develops an artificial 

intelligence model, which uses deep neural network to predict 

the working behavior of the cooling circuit in the hydraulic 

system. And he proposes four different models and compared 

their performance. Rodrigues [21] proposed to estimate the 

aircraft hydraulic system health based on the each component 

health in the system, linking the health factors of each 

component. Kelley[9] realized the prediction of hydraulic 

system health based on distributed sensors and neural network 

nonlinear autoregressive exogenous model. Also other scholars 

introduce information fusion in the health diagnosis research, 

and achieved excellent achievements [6]. Helwig [4] uses  

a multi-channel non dispersive (NDIR) system working in the 

mid infrared range to detect the liquid state in the hydraulic 

system. Yong [26]analyzes the hydraulic oil characteristics, 

carries out the hydraulic module circuit analysis，calculates the 

friction calorific value. Meng [15] uses the competitive learning 

and unsupervised clustering advantages by self-organizing 

neural network to study the health clustering and safety 

recognition of the system. Macaluso [14] introduces a method of 

prediction and health management for fly-by-wire Electro-

Hydraulic Servo Actuators without adding new sensors. 

Krishnan [11] developed health monitoring and prognosis of 

Permanent magnet synchronous motor by creating intelligent 

digital twin in MATLAB/Simulink. Guo [3] proposes an 

importance density choice scheme grounded on the Minimum 

Hellinger Distance principle to obtains accurate remaining 

useful life prediction for the electrohydraulic servo actuator. 

Zhang [27]，based on the phase current, proposes a fusion 

method of Mix Logical Dynamic model and Elastic Net 

Regression model for Electro-Mechanical Actuator Health 

Indicator extraction. Qi[20] proposes the progressive fault 

diagnosis method for overall diagnosis of whole the electro-

hydrostatic actuator system, which can be divided into four 

levels for health detection and fault diagnosis of the overall the 

electro-hydrostatic actuator system. 

In previous research, the vehicle transmission system health 

degree study is relatively lacking, mostly most studies only 

consider the single module health evaluation. Regarding the 

issue above, in order to obtain the vehicle transmission system 

health, in this paper, a prediction model by multi-level data 

fusion method is established. The model uses PSO-BP neural 

network to calculate the system health degree and the proportion 

of each module parameter. Then, the weight of 20 types 

characteristic parameters is analyzed, and the key factors 

affecting the system health are analyzed. This model can provide 

a basis for equipment condition-based maintenance. 

2. Multi-level performance parameter  

The health degree evaluation of the vehicle transmission systems 

is directly influenced by three modules: the mechanical module, 

the electric control module, and the hydraulic module. The 

performance evaluation is based on the characteristic parameters 

extracted from the data collected by sensors. The mechanical 

module characteristic parameters sources include vibration 

sensors, speed and torque sensors, vehicle dynamics models, 

throttle opening and other data. The electronic control module 

characteristic parameters sources include temperature sensors, 

controller return signals and other data. The hydraulic module 

characteristic parameters sources include oil temperature, oil 

pressure sensor and other data. Moreover, each module 

evaluation is influenced by the performance evaluation in many 

aspects. Based on the target attribute fusion evaluation 

application requirements, a hierarchical composite fusion 

processing structure is used. Thus, a three-level progressive 

evaluation system is established, including module, 

performance, and parameter level, as shown in Figure 1. 

(1) Module level. The vehicle transmission system health degree 

is derived from the fusion evaluation of the three modules health 

degree, while the module-level evaluation is each component 

performance comprehensive score under this module. 

(2) Performance level. The module-level health degree 

evaluation is derived from each performance characterizing 

individual module fusion evaluation. The specific performance 

characterizing the service capability of the three modules, 

mechanical, electrical and hydraulic, together constitute the 

parameter module performance level. The performance level is 

a comprehensive access to each evaluation aspect such as 

durability performance, component work quality, transfer 

efficiency and stability of typical components. Through the 

analysis and inference of these properties, the module-level 

health degree can be inferred. For example, mechanical module 

health degree includes: mechanical durability, shift quality, and 

power transfer quality. Electronic control module health degree 

includes: sensor work quality, sensor work capability, and 

controller operation status. Hydraulic module health degree 

includes: hydraulic module oil supply capability, pump motor 

power transfer capability, oil pressure stability, and oil 

temperature stability. The performance level health evaluation is 

based on the overall evaluation of the characteristic parameters 

corresponding types. 

(3) Parameter level. The performance level health degree 

evaluation is derived from the evaluation decision of the 

corresponding single parameter or the multiple parameters 

fusion evaluation, and the parameters characterizing each 

performance together constitute the parameter level. The 

parameter level is to cover each module performance evaluation 

degradation characteristics, and the corresponding performance 

level health is obtained by considering the parameter evaluation 

together. For example, in the mechanical module performance 

evaluation, the mechanical durability evaluation is determined 

by the damage rate. And the shift quality is derived from the 

fusion evaluation of shift time, shock wave and slip work. The 

power transfer quality is derived from the fusion evaluation of 

output shaft speed, output shaft torque, minimum relative 

steering radius and transmission efficiency for specific working 

conditions. In the electronic control module performance 
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evaluation: the sensor working quality is derived from the signal 

fluctuation amplitude and signal fluctuation frequency, and the 

sensor working capability is derived from the signal pole 

duration evaluation. The controller operation status is derived 

from the heartbeat, control signal response time, control signal 

frequency and amplitude fusion evaluation. In the hydraulic 

module performance evaluation: hydraulic module oil supply 

capacity is derived from the fusion evaluation of oil pump 

volumetric efficiency and lubrication flow rate. The pump motor 

power transmission capacity is derived from the fusion 

evaluation of pump motor speed, pump motor volumetric 

efficiency and pump motor torque. The oil pressure stability is 

derived from the fusion evaluation of shift process oil pressure 

similarity, specific working condition oil pressure similarity and 

oil pressure characteristic parameter group. The oil temperature 

stability is derived from the specific working condition oil 

temperature similarity. The experimental data in this study is 

directly obtained by real vehicle acquisition, and the parameter 

layer data is used as model input. 

(4) Data level. The parameter level health degree evaluation is 

derived from the features extracted by the sensors or the analysis 

though the real vehicle data acquisition or the features obtained 

from the simulation model, and all the extracted sensors together 

constitute the data level.

 
Fig.1. Comprehensive transmission device performance parameter level. 

 

3. Multi-level data fusion method 

BP neural network is a kind of back-propagation neural network, 

which is relatively mature in data prediction and scene 

application. It is widely used in load prediction and sudden fault 

identification in the mechanical transmission process. When 

initializing the training network weights and thresholds, the 

connect weight 𝑉 and the threshold 𝑊 are selected from the 

random value in the [-0.999,0.999] interval. Calculate the output 

after the input parameters. The input layer output vector in the 

network is consistent with the input mode vector. Calculate the 

input and output of each neuron in the hidden layer according to 

formula (1) and formula (2). 

𝑠𝑗
𝑝
= ∑ 𝑥𝑖

𝑝𝑛
𝑖=1 𝑤𝑖𝑗 − 𝜃𝑗   (1) 

𝑏𝑗
𝑝
= 𝑓(𝑠𝑗

𝑝
)   (2) 

where 𝑗 = 1,2, … 𝑞；𝑝 represents the neurons number of  in the 

input layer. 

Then we adjust the error of each neuron in the output layer, 

according to the given expected output, feed-forward loop 

training, verify the error value, and reach the given error range: 

𝑑𝑡
𝑘 = (𝑦𝑡

𝑘 − 𝑐𝑡
𝑘)𝑓′(𝑙𝑡

𝑘)  (3) 

where 𝑡 = 1,2, … , 𝑞；𝑘 represents the neurons number in the 

output layer. 

In PSO optimization algorithm, each optimization problem 

solution is a particle in the d-dimensional search space. All 

particles are regarded as virtual points without mass and volume 

in d-dimensional space. Each particle also has speed and 

position to determine their search direction and distance. PSO is 

initialized as a group of random solutions, and then the optimal 

solution is found through iteration. Update the particle velocity 

and position using the following formula: 

𝑉𝑖
𝑑 = 𝑤𝑣𝑖

𝑑 + 𝑐1𝑟1(𝑝𝑖
𝑑 − 𝑥𝑖

𝑑) + 𝑐2𝑟2(𝑝𝑔
𝑑 − 𝑥𝑖

𝑑) (4) 

𝑥𝑖
𝑑 = 𝑥𝑖

𝑑 + 𝑎𝑣𝑖
𝑑     (5) 

where 𝑖 = 1,2, . . . , 𝑚; 𝑑 = 1,2, … , 𝐷；𝑐1 and 𝑐2 are non-

negative constant learning factors; 𝑟1 and 𝑟2 are random numbers 

within [0,1]. W is a non negative inertia factor; a is the weight. 

As shown in Figure 2, the twice data fusion model is 

constructed in turn as shown in Figure 2, including parameter 

level feature fusion model and module level health degree fusion 

model. The first data fusion model is responsible for fusing the 

feature parameters under each module level and outputting each 

submodule health degree. The second data fusion model is 

responsible for fusing the three submodules health degree, and 

finally outputting the vehicle transmission system health degree 

after model training. The PSO-BP model training part is one step 

of the vehicle transmission system multi-level data fusion 

process. 

(1) Initialization. The various parameters involved in the 

PSO algorithm are selected, such as the maximum iterations 

number 𝑇𝑚𝑎𝑥 in the algorithm, the learning training factors 𝑐1, 

𝑐2, and the particle velocity search interval [Vmin, Vmax]. The 

search points positions and their velocities are randomly 

initialized, each particle initial position is set in advance, and the 

global extremes are found from the individual extremes and the 

positions are recorded. 

(2) Solving the fitness. The fitness value is calculated by the 

initially formulated fitness function. If the calculated result is 

better than the current individual extreme value, the individual 

optimal position is updated to the calculated particle position. It 

is necessary to find the optimal value among all the individual 

extremes of the particles currently provided. After that, if it is 

better than the current global extremes, the global extremes are 

updated to that optimal value and the global optimal position is 
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updated to the individual optimal particle position. 

(3) Update the particle position and velocity. If Vi<Vmin, 

update Vi to Vmin, Vi>Vmax, update Vi to Vmax, and vice versa, update 

the acceleration factor to continue the search until the condition 

is satisfied. 

(4) End of optimization search. If the iterations number is 

greater than the iterations Tmax, or the global optimal position 

satisfies the minimum bound, the global optimal position is the 

final optimal value and the optimal solution is output, otherwise, 

return to (2) and continue iteration. 

(5) Calculate the error, using the expected output form the 

network and the actual output, and calculate the error function 

partial derivative δ0(k)a for each neuron in the output level. 

(6) Judging the output. Assume that the search space is an 𝑁-

dimensional space and this population consists of n particles. 

This population X=(x1,x2,...xn), where the position of the k-th 

particle is denoted by Xk=(xk1,xk2,...xkD), the velocity is denoted 

by vk=(vk1,vk2,...,vkD), and the particle individual extremum is 

denoted by Pk=(pk1,pk2, ...,pkD), and the overall global extremes 

are represented by Pg=(pg1,pg2,...,pgD).PSO algorithm parameters 

mainly include: population size 𝑚, inertia weight 𝑤, 

acceleration constants 𝑐1 and 𝑐2, maximum velocity 𝑉𝑚𝑎𝑥, and 

iterations maximum number 𝐺𝑚𝑎𝑥. The algorithm parameters 

design is determined according to the specific problem, usually 

inertia weight 𝑤 = 1, acceleration constant 𝑐1 = 𝑐1 = 2. The 

inertia weight keeps the particles moving inertially, so that they 

have the tendency to expand the search space and have the 

ability to explore new regions. The acceleration constants c1 and 

c2 represent the weights of the statistical acceleration terms that 

push each particle to 𝑃i and Pg positions. A low value allows the 

particle to hover outside the target region before being pulled 

back, while a high value results in an abrupt dash toward or over 

the target region. 

 
Fig.2. Multi-level data fusion training steps. 

𝑉𝑚𝑎𝑥 determines the region resolution between the current 

position and the best position, i.e., the solution interval accuracy. 

It has to be designed appropriately. 

If it is too large, the particle is likely to fly over the good 

position if it is too small, the particle cannot search enough 

outside the local good region and easily fall into the local 

optimum. 

If c1= c2=0, the particle will keep flying at the current speed 

until it reaches the boundary. It can only search a finite region, 

so it is difficult to find a good solution. 

If 𝑤 = 0, the velocity depends only on the particle's current 

best position 𝑃𝑖  and its historical best position 𝑃𝑔, and the 

velocity itself has no memorability. Suppose a particle is located 

in the global best position, and it will remain stationary. While 

other particles fly to the weighted center of its own best position 

𝑃𝑖  and the global best position 𝑃𝑔. Under this condition, the 

particle population will shrink to the current global best position, 

i.e., converge to the local optimum, which is more like a local 

algorithm. After adding the first part, the particles have the 

tendency to expand the search space, i.e., the first part has global 

search capability. This also allows 𝑤 to adjust the balance of 

global and local search algorithm capabilities for different 

search problems. If c1=0, particle has no "cognitive" capability, 

but only "social" reference. The ability to reach a new search 

space is achieved by the particle interaction. It converges faster 

than the standard version, but for complex problems. It is more 

likely to fall into local extrema than the standard version. 

If c2=0, particle does not have "social" information sharing 

between particles. Since the information interaction between 

individuals is lack, a population which size 𝑚 is equivalent to 

single m particles run. Therefore, the chance to obtain a solution 

is very small. 

The inertia weight 𝑤 also relaxes the requirement for 𝑉𝑚𝑎𝑥 , 

since both serve to maintain a balance between global and local 

search capabilities. In this way, when 𝑉𝑚𝑎𝑥  increases, balanced 

search can be achieved by decreasing w. And the decrease in 𝑤 

can lead to a corresponding decrease in the required iterations 

number. For global search, it is usually better to have a high 

exploration capability in the early stage to get the appropriate 

seeds, and a high exploitation capability in the later stage to 

speed up the convergence rate. Therefore, 𝑤 can be set to 

decrease with time or the iterations number.  

4. Results and health degree analysis  

The three modules parameter characteristics are used as the first 

level fusion model input parameters, including 20 types 

characteristic parameters such as damage rate, speed, torque, oil 

pressure, and oil temperature, respectively. The submodule 

health degree from expert empirical is used as the fusion model 

output parameter. Then the three types target module models 

calculated first level health degree is used as the second level 

fusion model input parameter, and the vehicle transmission 

system is the second level fusion model output. The whole multi-

level data fusion network model consists 200 feature training 

sets. The source of the data is vehicle data. The on-board sensor 

data is transmitted by CAN, mainly including oil pressure, 

temperature, speed, mileage and controller status information, 

totaling 69 types. The data are collected in real time at  

a sampling rate of 20Hz. Among them, the shift time is set from 

the change of the handle gear value to the transmission ratio 

reaches the target gear and the difference between the 

transmission ratios is less than 10% for 10 consecutive data 

points, which is the end time of the shift. 

According to the data parameters types collected by the 

integrated drive, the multi-level data fusion model input nodes 
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established based on the data fusion method are determined as 

20. The intermediate hidden levels number is finally determined 

as 5, and the nodes in each level number is taken as 32, 64, 128, 

256, 512, respectively. the model is trained according to the 

selected training set, and during the training process, the training 

set is used to learn each. The implicit levels weights and biases, 

where the weights and biases in the multilevel data fusion 

network are randomly initialized and it is subject to the normal 

distribution with zero as its average and one as its variance. 

The original data are compared with prediction results of the 

overall the vehicle transmission system health degree. Figure 3 

shows 50 sets of characteristic control samples selected 

randomly. It can be seen that the health degree percentages of 

each submodule and the overall vehicle transmission system are 

above 90%, indicating that the vehicle transmission system is in 

good condition, and it can ensure the vehicle transmission 

system works smoothly. 

 
(a) Mechanical module level health degree. 

 
(b) Electronic control module health degree. 

 
(c) Hydraulic module health degree. 

 
 

(d) Vehicle transmission module health degree 

Fig.3. Health degree comparison between original data and 

prediction results. 

The accuracy of the constructed model is judged by comparing 

the relative error between the original data health degree real 

value and predicted value. One training sample feature set is 

used as the research object, as shown in Table 1. The mechanical 

module health degree prediction error is 3.7%, and the electric 

control module health degree prediction error is 1.3%, the 

hydraulic module health degree prediction error is 1.74%, the 

vehicle transmission system health degree prediction error is 

1.73%. The average relative error of the four types prediction 

values is 2.6% in absolute value, which indicates that the 

constructed multi-level data fusion model has a good fusion 

effect. 

Table.1 Four types health degree real value, predicted value and 

relative error. 

Characteristic 

health degree  

Mechanical 

module 

Electronic 

control 
module 

Hydraulic 

module 

Integrated 

drive 

True health 

degree 
0.985 0.963 0.958 0.972 

Predicted 
health degree 

0.948 0.976 0.941 0.955 

relative error  0.0375 0.0134 0.0177 0.0174 

 

The one type module characteristic parameters fusion effect on 

the health degree of the respective module and vehicle 

transmission system is considered singly. (a) Eight types 

mechanical module characteristic parameters are used as input 

the fusion model parameters, and two types health degree of the 

mechanical module and the integrated drive are used as output 

the fusion model parameters. (b) Three types electric control 

module characteristic parameters are used as input the fusion 

model parameters, and two types the electric control module 

health degree and the integrated drive are used as output the 

fusion model parameters. (c) Nine types hydraulic module 

characteristic parameters as the input the fusion model 

parameters, and the two types the hydraulic module health 

degree and the vehicle transmission system as the output the 

fusion model parameters. As shown in Figure 4 below, the same 

50 sets samples are selected for validation, and the fusion effect 

is poorer when considering a single class module compared to 

three classes modules. In particular, in the electric control 

module level, the multi-level data fusion model used does not 

achieve the desired effect for fusing samples with only three 

types of input parameters. Therefore, it is high reference value 

to consider fusing three types of modules for the vehicle 

transmission system health degree valuation. 
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Fig.4. Module level and comprehensive transmission device health degree integration comparison diagram. 

 
(a) Single mechanical module level health degree. 

 

 
(b) Vehicle transmission system health degree. 

 

 
(c) Single electronic control module health degree. 

 
(d) Vehicle transmission system health degree. 

 

 
(e) Single hydraulic module health degree. 

 

 
(f) Vehicle transmission system health degree. 

 

 

 

 

5. Multi-parameter weight analysis 

The vehicle transmission system is a complex system integrating 

electromechanics and hydraulics, and its service environment 

contains a variety of complex operating conditions, while the 

interaction between system components, modules and 

submodules is highly coupled, and its service performance 

degradation is a complex gradual process of multi-physical 

fields, multi-module variables and multi-level performance 

parameters, which is difficult to be accurately evaluated and 

comprehensively characterized by a single vibration signal or 

physical parameters. A multi-level parameter system could 

ensure an effective and accurate assessment of the complex 

systems degradation degree. In this system, the vehicle 

transmission system health degree is used as the target level data. 

The comprehensive the vehicle transmission system health 

degree consists of three modules health degree. The single 

module health degree can be characterized by multiple system 

performance. Each characterized performance can be evaluated 

by multiple feature parameters, and different feature parameters 

come from different physical models, real vehicle data, bench 

sensor data, etc. Among them, the parameter level calculation 

plays a key role in the system construction. Different parameters 

have different influence on system health degree, and this 

section conducts multi-parameter feature weighting analysis, in 

order to analyze the different influence factors on system health 

degree during the transmission system working and analyze the 

key factors affecting system health degree. 

The 20 types parameter feature weights of the multilevel fusion 

model results are extracted and each parameter weights in the 

fusion process are analyzed. As shown in Figure 5, it can be seen 

that the mechanical module weights are higher than the other 

two modules. The mechanical module damage rate accounts for 

the largest weight of the 20 parameter feature weights, with  

a value of 0.095. Therefore, the mechanical module meta-

components performance is the main factor affecting the vehicle 

transmission system health degree 
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Fig.5. 20 feature weight distribution histogram. 

The weight assignment problem in three types modules is 

analyzed with different parameter feature data samples, as 

shown in Figure 6, which is a radar plot of three types modules 

health degree the weight assignment form four data samples, 

respectively. Through the radar diagram visual expression effect, 

observing the weights size which is obtained from the four types 

data feature samples fusion results. The weight of the 

mechanical module fluctuates around 0.56, the weight of the 

hydraulic module fluctuates around 0.3, and the weight of the 

electronic control module fluctuates around 0.14. The 

proportion of mechanical module weight accounts for more than 

a half. It can be seen that the order of influencing the vehicle 

transmission system health degree is mechanical module, 

hydraulic module, and electric control module in order. By 

comparing the predicted data in reference [17] with the fault tree, 

it can be seen that the failure of the automobile transmission 

system is mainly caused by mechanical components. The two 

conclusions are similar. 

 
(a) Three types module weight distribution radar chart for data 1. 

 
(b) Three types module weight distribution radar chart for data 2. 

 
(c) Three types module weight distribution radar chart for data. 

 

 

 

 

 
(d) Three types module weight distribution radar chart for data 4 

Fig.6. Three types modules weight distribution radar diagram. 

Based on the multi-level data fusion model with limited real 

measurement data, the health degree fusion results maximum 

deviation from the expert experience health degree does not 

exceed 5%, and the constructed multi-level data fusion model 

has a high fusion efficiency. The three types module-level 

parameter characteristics fusion has good fusion effect and  
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practical significance for the vehicle transmission system health 

degree comprehensive evaluation. In contrast, the single 

module-level characteristic parameter fusion effect on the 

overall the vehicle transmission system health degree is poor, 

and the module-level health degree deviation from the vehicle 

transmission system health degree is large. The vehicle 

transmission system health degree influence order is mechanical 

module, hydraulic module and electric control module. The 

mechanical module components performance is the main factor 

affecting the overall the vehicle transmission system health 

degree. 

6. Conclusion 

In order to explore the vehicle transmission system health 

degree, we establish a multi-level data fusion model which uses 

PSO-BP neural network. The model can accurately predict the 

system health. Based on the limited measured data, the vehicle 

transmission system health degree is obtained by the single 

module feature parameters fusion, and three module feature 

parameters fusion are compared. Then the 20 types multi-level 

fusion model results parameter characteristic weights are 

extracted for analysis. The following conclusions are obtained. 

(1) The predicted values average absolute relative error of 

the four types multi-level data fusion algorithm is 2.6%, 

indicating that the constructed multi-level data fusion model has 

a good fusion effect. 

(2) The single module-level characteristic parameter 

fusion，which is difficult to acquire the vehicle transmission 

system health degree, and it is a large deviation between the 

module-level health degree and the vehicle transmission system 

health degree.  

(3) Mechanical module has the greatest impact on the vehicle 

transmission system health degree, followed by hydraulic 

module and electronic control module. Moreover, the damage 

rate in mechanical module accounts for the largest weight of the 

20 parameter characteristics, and the mechanical module 

components performance is the main factor affecting the overall 

the vehicle transmission system health degree. 

By predicting the vehicle transmission system health degree, this 

model can help maintenance personnel better control the 

operation status of equipment and promote the efficient and safe 

operation in equipment throughout its life cycle. 
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Appendices 

 

Table.2 Twenty characteristic indexes 

 Symbol Meaning 

A1 Damage rate 

A2 Shift time 

A3 Impact degree 

A4 Sliding friction work 

A5 Output shaft speed 

A6 Output shaft torque 

A7 Turning radius 

A8 Transmission efficiency 

B1 Signal fluctuation amplitude 

B2 Signal fluctuation frequency 

B3 Signal extreme value duration 

C1 Oil pump volumetric efficiency 

C2 Lubrication flow 

C3 Pump motor speed 

C4 Pump motor volumetric efficiency 

C5 Pump motor torque 

C6 Shift oil pressure similarity 

C7 Oil pressure similarity under specific 

working conditions 

C8 Oil pressure characteristic parameter group 

C9 Oil temperature similarity 
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